

CVVH: An Overview

Ιωάννης Γ. Γριβέας, MD, PhD Νεφρολόγος

Primary Therapeutic Goals in ARF

- Optimize hemodynamic and volume status
- Minimize further renal injury
- · Correct metabolic abnormalities
- · Removal of Uremic toxins
- Permit adequate nutrition

Limitations on Dialysis Delivery in ARF

- Hypercatabolic state
- · Hemodynamic instability
- · Control of Volume status

Continuousi Renal Replace in Therapy Therapy (CRRT)

CVVH Continuous Veno-Venous Hemofiltration

CVVHD Continuous Veno-Venous Hemodialysis

CVVHDF Continuous Veno-Venous Hemodiafiltration

SCUF Slow Continuous Ultra-Filtration

SLED Slow Low Efficiency Dialysis

Primary Therapeutic Goals in CRRT

- Solute Removal
 - Diffusion and Convection
- Solute Addition
 - Replacement Fluid
- Fluid Removal
 - Convection
- Detoxification

Basic CRRT Concepts

- Convection
 - Ultrafiltration coefficient
 - Sieving coefficient (Sc)
 - Solvent Drag
- Diffusion
 - Solvent gradient
- Effluent
- Secondary Membrane Formation
- Replacement Solution
- Clearance

Convection

- Fluid Removal and Solute Removal
- Movement of fluid across the membrane via transmembrane pressure
- Water moves across the membrane and carries dissolved solutes with it via solvent drag
 - Ultrafiltration is fluid removal
 - Hemofiltration involves partial or total replacement of fluid removed

Convection

- Ultrafiltration plasma water
 - Ultrafiltration coefficient of the membrane
 - Potential to remove water adjusted for the transmembrane pressure
- Solute removal from plasma
 - Sieving coefficient for that solute
 - Ratio between the solute concentration in the ultrafiltrate and its average plasma concentration within the dialyzer
 - Inversely related to the solute molecular weight
 - $\,$ $\,$ ~1.0 with small solute and highly permeable membranes

Luciano A. Pedrini J Nephrol 2003; 16 (suppl 7): S57-S63

Chelamcharla M, Semin Nephrol. 2005;25(2):81-9

Diffusion

- Movement of solutes down a concentration gradient across a semipermeable membrane.
- Solutes cross the membrane from the blood to the dialysis fluid compartment.
- Fluid in the dialysis compartment moves in a counter-current direction, thereby maintaining a concentration gradient.

Diffusion

- · Diffusive clearance is determined by
 - Molecular weight of the solute
 - Concentration gradient across the membrane
 - Membrane surface area
 - Thickness and pore size

Effluent

Represents the end product of the filtration process

• CVVH: Ultrafiltrate

CVVHD: Dialysate plus variable ultrafiltrate

CVVHDF: Dialysate plus ultrafiltrate

CVVHDF

Continuous Veno-Venous HemoDiaFiltration

CVVHD

Continuous Veno-Venous HemoDialysis

Technical Aspects

	SCUF	CVVH Hemofiltration	CVVHD HemoDialysis	CVVHDF HemoDiaFiltration
Blood filter	High Permeability	High Permeability	Low Permeability	High Permeability
Middle Molecule Clearance	4	+++	-	+++
Replacement Fluid	None	RF	None	RF
Dialysate	None	None	D	D

Adapted from Johnson RJ, Feehally J, Comprehensive Clinical Nephrology $\,2^{\rm nd}$ Edition

Replacement Solution

- Replaces the ultrafiltrate removed by hemofiltration and hemodiafiltration.
- · Buffers: Lactate, bicarbonate or citrate
- Lactate and Citrate metabolized by liver and muscle to bicarbonate.
- Bicarbonate is most easily tolerated
 - can be unstable in solution
- Lactate is more stable
 - may contribute to an existing lactic acidosis in septic or liver failure patients
- Citrate
 - Regional anticoagulation

Citrate Regional Anticoagulation

- Citrate causes anticoagulation by chelation of calcium in the extracorporeal system
- · Systemic anticoagulation does not occur
 - as ionized calcium level is restored when blood returning from the extracorporeal system is mixed with venous blood
- Rapid metabolism of citrate restores bicarbonate level and releases calcium
- Patients with severe liver failure and lactic acidosis may have difficulty metabolizing citrate and develop citrate toxicity

Citrate Toxicity

- Low ionized Calcium despite repletion
- Elevated total serum Calcium in response to repletion
- Exacerbation of serum acidosis
- Elevation of anion gap
- Decrease Citrate replacement solution rate
- Switch replacement solutions

Citrate Replacement solution

- Sodium Citrate = 40 mEq/Liter,
- Dextrose = 2 gm/Liter,
- Sodium Chloride = 105 mEq/Liter,
- Magnesium Sulfate = 1.5 mEq/Liter.
- CVVH with maximum replacement of 2000 cc citrate/hour.
- CVVHDF add dialysate to improve clearance.
- Calcium replacement scales adjusted depending on clearance

Pre- vs. post-dilution

Return

Replacement

Postfilter

Post-dilution:

- UF rate is not limited

Pre-Dilution

- Replacement fluid infused at the proximal side
- · Relatively low viscosity of the blood within the filter
- Efficiency of ultrafiltration is compromised
- Reduces net filtration fraction
- Minimizes concentration of clotting factors
- Prolongs filter lifespan

Post-Dilution

- · Replacement fluid infused via distal side
- Most efficient technique
- Maximum clearances
- · Maximally dehydrates the blood in the hemofilter
- Higher viscosity of the blood within the filter
- · Clotting of filter

Ultrafiltration Membranes

- Hemofilters allow the passage of molecules with a molecular weight of less than 50,000 Daltons.
- Small molecules freely filtered
 - sodium, potassium, bicarbonate, glucose and ammonia.
- · Larger soluble substances filtered
 - myoglobin, insulin, and interleukins
 - medications (vancomycin, heparin)
- Protein bound molecules are not filtered effectively

TMP TransMembrane Pressure

- Pressure exerted on the membrane during operation
- Primary factor determining filtration rate
- Pressure difference between blood and fluid compartment
- Usual range 100 500 mmHg
- Increased TMP associated with increased UF rate
- TMP= [(Filter Pressure + Return Pressure)/2] Effluent Pressure

Clearance

- · Clearance is the rate at which solutes are cleared.
 - excretion rate of solute / blood concentration of solute
- Solute clearance in CVVH depends on UF Rate
- Clearance in Predilution 10-15% < Postdilution
- Predilution mode Clearance improved
 - large hemofilters
 - high UF Rate

Strategies to Increase Solute Clearance

- Increase Transmembrane pressure
- Increase filter permeability to water
- · Increase filter surface area
- Increase blood flow
- CVVHDF
 - Add dialysis to convection

Secondary Membrane Formation

"gel layer" or "protein cake"

- Protein layer formed over surface of dialyzer membrane with transmembrane pressure
- Reduces the effective solute and water permeability.
- Adsorption occurs in all membranes
- Magnified in CRRT

- Pre-pump increases filter life
 - Dilute blood going into the filter
 - Dilute protein and red cell concentration

Ronco C, Contrib Nephrol. 1991;93:175-8 Mehta R, Atlas of Diseases of the Kidney 1999

Indications for CRRT

- Patients with/ at risk for hypotension:
 - severe hemodynamic instability
 - hepatic failure
 - CHF
 - sepsis or multiple organ failure
- Patients at risk of cerebral complications:
 - hepatic failure, stroke or head trauma
 - high risk for cerebral edema

Indications for CRRT

- Increased metabolic needs
 - massive burns
 - sepsis
 - multiple organ failure
- Volume overload
 - massive volume overload
 - Patients receiving large amounts of fluids or blood products
 - When volume management is critical

Non-renal Indications for CRRT

- Lactic acidosis
 - Ongoing production
- Crush injury
 - Myoglobin Removal
- Tumor lysis syndrome
- Temperature control
 - Relative hyper or relative hypothermia*
- Massive volume overload without ARF
- High NH₃

Potential Advantages of CRRT

- Increased total solute clearance
- Gradual clearance may be better tolerated
 - Decreases frequency of hypotension
 - Decreases risk of cerebral edema
- Continuous clearance may help in removal of toxins with high intracellular concentrations
- Increased clearance of middle molecules
- Precise adaptable volume control

Potential disadvantages of CRRT

- Anticoagulation requirement
- Lack of rapid fluid and solute removal
- Limited role in overdose setting
- Relative Hypothermia
- Electrolyte Depletion
 - K, PO₄, Ca

Technical Complications of CRRT

- Vascular access malfunction
- Blood flow reduction and circuit clotting
- Loss of filter efficiency
- Line disconnection
- · Air embolism
- Fluid and Electrolyte balance errors

Clinical Complications of CRRT

- Bleeding
- Thrombosis
- Line Infection and sepsis
- Relative Hypothermia masking low grade fever
- Nutrient losses
- Inadequate blood purification due to down time
 - median 3 h per day down time1
- Thrombocytopenia
 - destruction or retention of platelets passing through hemofilter.²
 - 1. Uchino S,Intensive Care Med. 2003 Apr;29(4):575-8.
 - 2. Mulder J, Int J Artif Organs. 2003;26(10):906-12.,

Contraindications of CRRT

Life-threatening hyperkalemia

Drug Dosage in CRRT

- Minimal removal of protein bound drugs
- Some may be removed via membrane adsorption
- Drug clearances increased with CVVHDF
- Higher doses may be needed with higher UF rates
- GFR = 10 ml/min Low UF rate
- GFR = 30 ml/min Medium UF rate
- GFR = 50 ml/min High UF rate

Nutrition and CRRT

- Increased azotemia induced by protein or amino acids in TPN¹
- Fluid overload caused by the administration of TPN¹
- Negative balances of selenium, copper, thiamine²
- Loss of Magnesium and calcium³
- High-protein diet safe for patients with ARF on CRRT⁴
- Protein intake of 2.5 g/kg/day
 - increases the likelihood of positive nitrogen balance⁵
 - corrects amino acid deficiencies.⁶
- Bellomo R. Blood Purif. 2002;20(3):296-303.
 Berger MM. Am J Clin Nutr. 2004;80(2):410-6.
- 3. Klein CJJPEN J Parenter Enteral Nutr. 2002;26(2):77-92 4. Bellomo R. Ren Fail. 1997;19(1):111-20.
- Scheinkestel CD Nutrition. 2003;19(11-12):909-16.
 Scheinkestel CD. Nutrition. 2003;19(9):733-40.

Estimate GFR in CRRT

- eGFR = <u>Replacement Solution ml per hour</u>
 Ideal body weight
- eGFR = 3000 ml/hr70 kg
- eGFR= 42

CRRT and Sepsis

- Many immune mediators are water soluble and fall into the middle-molecular-weight category
 - Theoretically removed via hemofiltration.
 - adsorption to the filter membrane
- CRRT in animal models of sepsis and have demonstrated some beneficial effects.
 - CVVH reduces plasma TNF, but not IL-6, IL-10.
- Early isovolemic CVVH at 2 l/hour in established sepsis
 - No reduction of several cytokines and anaphylatoxins
 - Organ dysfunction not improved.
- CVVH has not been shown to benefit SIRS/Sepsis in the absence of ARF

High Volume HemoFiltration and Sepsis

- HVHF: ultrafiltration of more than > 35 ml/kg/hour
- 'sepsis doses' of ultrafiltration 3.8–6 l/hour
 - increased survival
 - decreased vasopressor requirements
- animal studies
 - significant hemodynamic benefit
 - improvement in immune cell responsiveness
 - reduced mortality
- More studies are needed to clarify the role of HVHF
 - hyperdynamic septic shock
 - · with or without acute renal failure
 - sepsis and SIRS.

Cole L. Intensive Care Med 2001, 27:978-986

Oudemans-van Straaten HM, Intensive Care Med 1999, 25:814-821.

Honore PM Int J Artif Organs. 2004, 27(12):1077-82.

CRRT vs Hemodialysis

- No consistent statistically significant difference in survival
 - Vinsonneau et al. Lancet 2006; 368: 379-85
- Both methods are complementary
- IHD
 - Faster Potassium elimination
 - Faster Drug/Toxin elimination
 - Better for overdose
- CRRT
 - Regulation of higher calories requirements
 - Hemodynamically unstable patients
 - Precise adaptable volume control

Cessation of CRRT

- All criteria for initiating CRRT are absent
- Urine output averages 1ml/kg/hr over a 24hr period
- Fluid balance can be kept approximately neutral with current urine output
- There is a complication related to CRRT
- When criteria are fulfilled begin a 12-24 hour period without CRRT
- Reevaluate for indications for CRRT
- CRRT should be initiated early and ceased late

QUESTIONS \$\$\$\$