

The Peritoneal-Vascular Interface

The Peritoneal-Vascular Interface

The Peritoneal-Vascular Interface

Important transport occurs here

Solute Transport in PD

How does solute enter peritoneal fluid?

- I. Diffusion
- II. Convection (during ultrafiltration)

Diffusion Kinetics - from blood to dialysate

- diffusive flux is highest in first hour and lessens over time
- by 4 hours, urea is > 90% equilibrated, creatinine > 60% equilibrated
- further small solute removal is minimal after that
- long dwells more important for removal of larger MW solutes

Diffusion Curves - a Schema

Diffusion Kinetics - from dialysate to blood

What can you add to dialysate?

- antibiotics (not just for peritonitis)
- insulin
- KCl (up to 10 mEq/l)
- xylocaine, NaHCO3 (infusion pain)
- metoclopramide, erythromycin (gastroparesis)
- erythropoietin
- calcitriol

Ultrafiltration in PD

- in PD, done by osmotic pressure (compared to HD where done by hydraulic pressure)
- · results of ultrafiltration:
 - fluid removal
 - convective removal of solutes, especially middle molecules

Composition of Peritoneal Dialysate: Osmolality

- 1.5% dextrose 347 mOsm/l (isotonic)
- 2.5% dextrose 397 mOsm/l (hypertonic)
- 4.25% dextrose 485 mOsm/l (hypertonic)

Ultrafiltration - Example of 4.25% Dialysate

Water will move from lower to higher osmolality

Ultrafiltration

Glucose itself will diffuse out of peritoneal cavity along its own concentration

Ultrafiltration in Peritoneal Dialysis

Some examples of UF from studies in humans:

1.5 % Dialysate
maximum UF 330 +/- 187 ml
time to maximum UF 140 +/- 48 minutes
4.25 % Dialysate
maximum UF 1028 +/- 258 ml
time to maximum UF 247 +/- 61 minutes

Ultrafiltration

The Peritoneal Equilibration Test (PET):

A Way to Characterize the Peritoneal

At time t = 4 hours

"tight" peritoneal membrane (slow

(creatinine) (gitteose)

Lower

D/P

Creat.

blood

Peritoneal cavity

Peritoneal Equilibration Test

Twardowski et al. PDB

Membrane Permeability and Ultrafiltration - "rapid transporters"

the "leakier" the peritoneal membrane (more vascular beds are open)

1

the faster glucose will diffuse out of the peritoneal cavity

the faster the osmotic gradient will dissipate

Why is Someone a Rapid Transporter from the Start?

- association with higher CRP, lower serum albumin, less residual renal function
- in some studies, more common in diabetics
- lower serum albumin seen before the start of PD

This suggests that rapid transporter status may be a marker of inflammation!

Membrane Permeability and Ultrafiltration – "slow transporters"

the "tighter" the peritoneal membrane

the slower glucose will diffuse out of the peritoneal cavity

the osmotic gradient will be maintained longer

Transport Status – Implications for Ultrafiltration

Rapid vs Slow Transporters: Why Solute Removal Isn't that Different

the better UFCincthe elewetpansporters will increase solute removal through convective transport D=diffusive flux

small solute removal D D D Rapid transporter

Transport in Peritoneal Dialysis The Three Pore Model

The Concept of Sodium Sieving

blood

The Concept of Sodium Sieving

Icodextrin

Mechanism of Action:

colloid osmosis – analogous to the Starling force of albumin() causing fluid flux from the interstitial to vascular compartment

Dextrose vs Icodextrin

Crystalloid osmosis with dextrose

Dextrose vs Icodextrin

Colloid osmosis with Icodextrin

Peritoneal Ultrafiltration: Glucose vs Icodextrin (Computer Simulation)

Rippe and Levin Kidney Int 2000

Icodextrin in the Long Dwell of APD

TABLE 2

Hean Ut rafiltration (in millitians) with Icodextrin for Each Week of Increasing Dwell Time

Dwell	H	Mean³	20	35	Minimum	Median	Maximum
Week 1: 10 hours	31	351.73	250.59	49.00	-330.86	312	1126.29
Week 2: 11 hours	35:	348.71	234.72	39.5?	-302.29	362	1153,43
Week 3: 12 hours	36	385,63	249.86	40.14	-338.00	390	1233,43
Week 4: 13 hours	35	390.34	257.68	43.55	-388.00	375.28	1240,57
Week 5: 14 hours	35	371,75	258,25	43.65	-309.43	387.42	1012.00
and the second				3			

Mean net overnight UF at 12 hours

Mistry et al 1994

Maintenance of UF during Peritonitis

(Posthuma, 1997)

Adequacy of Dialysis in PD

- The strength of PD lies in
 - continuous therapy 24/7
 - preservation of RRF
 - good middle molecule clearance (by RRF and the peritoneal membrane)

None of these is adequately measured by Kt/V urea

Adequacy of Dialysis in PD

- randomized, controlled trials have not shown a survival benefit for any Kt/V urea > 1.7
- lower limit for Kt/V urea also unknown

Adequacy of Dialysis in PD

The KDOQI Guidelines 2006

- minimum total (renal + peritoneal)
 Kt/V urea of 1.7
- monitor and protect RRF
- · careful attention to volume status
- trial of increased dialysis is indicated if patient not doing well without another explanation

Fluid Balance

Intake

Na+ and water

Output

Urine and UF

- Intake
 - excessive salt and water consumption
- Output
 - loss of residual renal function
 - inadequate provision of UF conditions
 - failure of peritoneal membrane to respond (true ultrafiltration failure)
 - mechanical problems like leaks

- Intake excessive salt and water consumption
 - PD has often been "advertised" as allowing a more liberal dietary intake
 - patients with high salt intake are protected from volume overload while they have residual renal function (RRF)
 - · once urine volume diminishes, patient may develop fluid overload

- Output: Loss of Residual Renal Function
 - probably the commonest cause of progressive fluid overload
 - rate of loss of RRF is variable and unpredictable from patient to patient

- Output: Loss of Residual Renal Function
 - protect RRF
 - avoid NSAID's, COX 2-inhibitors, dye studies, aminoglycosides, volume depletion
 - use diuretics to augment urine Na+ & water output
 - · eg furosemide, metolazone
 - continue immunosuppression for failed transplant kidneys that still have function

- Inadequate provision of ultrafiltration conditions
 - usually this means failure to account for the long dwell

Temporal Profiles of APD and CAPD

Ultrafiltration Failure

 Definition: Inability to maintain volume homeostasis despite the use of hypertonic dialysate solutions (3 or more daily)

or

 Failure to ultrafilter > 400 ml using a 4.25% bag for 4 hours

Ultrafiltration Failure

- on PET test, D/P creatinine is high
- these high transporters have rapid absorption of glucose across peritoneal membrane
- rapid dissipation of osmotic gradient
- poor ultrafiltration

Ultrafiltration Failure

- Management of rapid transporters (I):
 - reinforce salt and water restriction
 - use more hypertonic dialysate
 - icodextrin can be quite helpful here (almost as effective in high transporters as other transport types)

Temporal Profile: Icodextrin

Summary of Important Points

- The transport characteristics can be determined by a Peritoneal Equilibration Test
 - "rapid transporter" has increased peritoneal vascularity and transports small solutes quickly; but loses glucose osmotic gradient quickly and so has problems with ultrafiltration
 - "low transporter" has slower removal of small solutes but excellent ultrafiltration
 - PD peritonitis can lead to transient "rapid transporter" state because of inflammation

Summary of Important Points

- in all PD patients (except rapid transporters) short PD dwells leads to removal of more water than sodium;
 - avoid short dwells except in rapid transporters
- residual renal function is a more important predictor of outcome than dose of PD measured by small solute kinetics
 - try to protect residual function
 - don't obsess about Kt/V get at least to minimum target and obsess about RRF and volume status