

Purpose of the Evaluation - Summary

- Assess patient's medical, surgical and psychological suitability for transplant
- Understand the patient's reasons for wanting a transplant
- Discuss risks vs benefits of transplant
- Discuss donor options
- Plan the immunosuppressive protocol ahead of time

The Big Questions

- •Will this pt benefit from transplant (survival, quality of life)? Wolfe et al. NEJM 1999;341: 1725
- •Is it appropriate to ask a living donor to donate?
- Is it appropriate to 'take' a deceased donor kidney from the list? (Responsibilities to individual pt and to the list)

ESRD Survival by Treatment Modality

■1 yr ■2 yrs ■5 yrs ■10 yrs

National Kidney Foundation. Available at: http://www.kidney.org.

Discussion with Patient - I

- What is the pt's understanding of risks and benefits of transplantation?
- Is pt aware transplant is not a zero-risk procedure?
- Is pt aware of the types of transplants and of live donor exchanges?

Discussion with Patient - II

- Is pt suitable for / interested in expanded criteria donors?
- Is pt suitable for / interested in HCV Ab+ positive donors?
- Is pt suitable for / interested in HBV cAb+ donors?

Expanded Criteria Donors

- Another source of allografts
- Survival poorer than that of 'regular' deceased donors but survival > dialysis Merion et al. 2005 Dec 7;294 (21):2726-33
- Typically matched to older recipients
- Consider in: all pts >60, diabetics >50, any pt where urgent transplant is required
- Obtain informed consent from pt

Advantages and Disadvantages of Living-Donor Transplantation

Advantages	Disadvantages
 Preemptive transplant option Can select donor for haplotype match, age Better outcomes Minimal delayed graft function No wait for deceased-donor kidney Can time transplant for convenience Immunosuppressive regimen may be less aggressive Emotional gain to donor 	 Psychological stress to donor Long donor evaluation process Operative donor mortality (~1/3000 patients) Major complications (0.2%-2%) Minor complications (~50%) Potential donor hypertension, proteinuria Risk of trauma to remaining kidney Risk of unrecognized covert renal disease

Kendrick E, et al. In: Danovitch GM, ed. Handbook of Kidney Transplantation. 2005:135-168.

Living Donor Evaluation

Donor's risk must be considered separately from recipient's need for transplant

Donor must be informed of the risks

ABO blood-type compatibility, tissue type, and crossmatch are initial screening steps

With multiple suitable donors, the transplant center will help determine the best donor

 For a younger recipient who may require a second transplant, a parent may be selected over a sibling, whose kidney may be needed in the future

Living Donor Evaluation (cont'd)

Medical history and physical exam Comprehensive lab screening

- Blood count/chemistry panel
- HBV, HCV, HIV, and CMV tests
- Glucose tolerance test

Urinalysis

24-hour protein and creatinine

Cardiovascular workup

- Chest X-ray
- ECG
- Exercise treadmill for donors older than age 50

Helical CT urogram
Psychosocial evaluation
Repeat crossmatch before transplant

Contraindications to Kidney Donation

Age

- <18 years or >65-70 years

Hypertension

 >140/90 mm Hg or need for medication

Diabetes

Proteinuria

- >250 mg/24 hours

GFR <80 mL/min

Microscopic hematuria

Multiple renal vessels

Significant medical illness

History of thrombosis or thromboembolism

Strong family history of renal disease, diabetes, or hypertension

Psychiatric conditions or substance abuse

Pregnancy

Kidney Transplant Evaluation Process

Adapted with permission from Kasiske BL, et al. Am J Transplant. 2001;1 (suppl 2):1-95.

History - I

- Cause of ESRD
- Previous transplants
- Previous pregnancies, RBC transfusions
- CV disease (exercise tolerance, evidence of PVD)
- Cancers
- Other diseases
- Previous immunosuppression (previous transplant, SLE etc)

History - II

- Compliance
- Social supports
- Family Hx (of renal disease, DM)
- Functional status
- Urine output; problems with urination (males)
- Possible living donors

Examination

- General exam
- •BMI
- Exclude overt CV disease and overt neoplasia
- Femoral pulses volume, bruits
- Feet in diabetics
- ·If the pt is frail assess their walking

Routine Tests

- ABO, HLA typing, Panel Reactive Antigen (PRA)
- EKG, CXR +/- cardiac stress tests +/-TTE
- HBV sAg, HBV sAb, HCV Ab, CMV Ab, HIV Ab, syphilis
- Pap smear in all women; mammogram >40yrs
- Stool guaic or colonoscopy if >50yrs

Immunizations in Adults

- Before transplant (at least 4 wks; longer if live attenuated)
- Viral: HAV, HBV*, influenza*, VZV
- Bacterial: pneumococcus

*May need yearly booster

Stark et al., Lancet 2002; 359: 957

Contraindications to Transplant

- Active cancer
- Active infection (acute or chronic)
- Active psychiatric illness
- Ongoing non-compliance / substance abuse
- Major morbidity which would be worsened by transplant or lead to very short posttransplant survival
- Severe obesity

Cancer

- Risks of faster tumor growth and 'wasted' kidney
- Minimum 2 yrs disease free; some minimum 5yrs (melanoma, breast)
- Oncology input
- Std screening for breast, colorectal, prostate, uterine cervix cancers

Chronic Infection

- Diabetic foot ulcers
- Osteomyelitis
- HIV not a C/I if controlled; refer to special center
- HCV related advanced cirrhosis (? list for liver plus kidney)

Psychiatric Illness

- Often treatable and not a C/I
- Ongoing substance abuse a C/I
- Mania: minimize steroids; avoid lithium if possible (? valproic acid)

Non-Compliance

- Common-sense assessment
- Compliance to dialysis regimen, meds
- Talk to local nephrologist and dialysis unit
- Formal psychiatric assessment in some cases
- Many pts improve with time (on dialysis)

Obesity

- Increasingly common
- Most pts gain weight after transplant
- ↑ risk of early complications: wound infection, wound dehiscence
- risk of later complications: DM, possibly poorer allograft survivial
- Most evidence suggests transplant still better than dialysis
- Evidence that BMI >41 is not a/w survival benefit compared to dialysis

Obesity - Practical Approach

- Ideally BMI < 30 but difficult to achieve
- In general, aim for BMI <35
- Judge each case on an individual basis e.g. the young obese pt with no CAD may do very well with a transplant
- Consider steroid free protocols

CV Disease: Background

 Important to distinguish peri-operative and long-term risk

Assessing peri-operative risk

- Risk of the surgery: renal transplant surgery is low-moderate
- Patient's risk based on their clinical status: most patients are intermediate
- Sometimes stress testing

Clinical Predictors of Peri-oprative Risk in the Patient

High	Intermediate
Recent MI,	ESRD / CKD
Unstable angina	DM
Decompensated CHF	
Severe valvular disease	
Severe arrhythmias	

CV Disease: Background

- Almost all patients have intermediate predictors of risk
- The transplant surgery is low-moderate risk
 Therefore....
- The absolute rate of peri-operative MI is low (especially with appropriate use of beta-blockers)

Therefore....

 The benefit of generalized testing and interventions is likely limited

Which Test to Use?

- ·Is it needed at all?
- Coronary angiography is gold standard but is invasive and in pre-dialysis patients, could precipitate contrast nephropathy
- ETT predicts risk in non-ESRD population but many ESRD pts don't achieve adequate 'stress'
- ·No consensus on the 'best test' in ESRD pts
- In practice, depends on your center

CV Assessment: A Practical Approach

- Assess pt for clinical predictors of perioperative CV events
- If major clinical predictors of peri-operative risk: defer transplant
- Most will have 'intermediate clinical predictors'

 consider a stress test (diabetics or known
 CAD or poor functional status)
- Reserve revascularization for standard indications
- Peri-operative beta-blocker if any CAD or any atherosclerotic CV disease

Peri-operative Management

- Intra-operative and post-operative betablocker; target HR 60-70
- Continue aspirin
- Common sense measures: avoid fluid overload, electrolyte abnormalities etc.

Optimizing CV status while on the list

- Control of HTN
- Control of CHF
- Rx of anemia
- •Rx of hyperlipidemia ?
- Revascularization where appropriate
- Re-evaluate higher risk pts (eg diabetics) every 12m

The Diabetic Recipient

- •Is whole organ pancreas (simultaneous or after kidney transplant) potentially of benefit?
- Timing of transplant
- •CAD
- •PVD
- Gastropathy (medications)
- Foot ulcers

Recurrent Disease

- Difficult to estimate as original dx may be unknown and recurrence is probably underdiagnosed post-transplant
- Histological recurrence ≠ clinical recurrence
- In 1 series, the third most important cause of graft loss (after rejection and death) in those with ESRD due to GN

Risk of renal allograft loss from recurrent glomerulonephritis; Briganti at al. N Engl J Med. 2002;347(2):103-9

Recurrent Disease

In general, transplant is not contraindicated but should be deferred until the disease is quiescent

Idiopathic MPGN I, II and Membranous Nephropathy

- All may recur and all may be a/w allograft loss
- Important to exclude underlying causes such as HCV or TMA
- MPGN can resemble chronic transplant glomerulopathy on light microsopy
- Membranous Nephropathy can arise de novo after transplantation

SLE

- Allograft and pt survival same as non-SLE recipients (Ward; Kidney Int 2000 57:2136)
- Allograft survival poorer if superimposed APS
- Ensure disease clinically quiescent before transplant
- High steroid exposure: minimize further steroids; prevent osteoporosis etc.
- High prevalence of CV disease

Systemic (ANCA) Vasculitis

- Renal and extrarenal recurrence
- •One series: recurrence anywhere in 17%; in graft in 10% (f/u mean 44m) Nachman et al, Kidney Int 1999; 56:1544
- Ensure disease is clinically quiescent before transplant
- ANCA at time of transplant probably not predictive of relapse
- Overall, allograft survival similar to nonvasculitis Magee et al, AST, 2003

Primary FSGS

- Circulating factor
- Recurs hrs days;
- Proteinuria then ↑ Cr
- Risk factors: white, child, previous malignant course, recurrence in previous allograft
- Case series suggest benefit from plasmapheresis, high dose CNIs, steroids

HUS / TTP

- Many forms of HUS / TTP <u>essential</u> to characterize in an individual pt
- Classic (diarrhea associated) unlikely to recur but wait minimum 6 months
- Atypical (non-diarrhea) likely to recur especially if inherited
- Prognosis if recurrence is poor

Atheroembolic Renal Disease

- Probably underdiagnosed as cause of ESRD?
- Most pts have significant comorbidities
- Potential for intraoperative atheroembolization to allograft
- Case reports of successful posttransplant outcomes

HIV

- •No longer a C/I per se
- With HAART, survival of HIV+ (ESRD) pts has dramatically improved
- CNIs possibly have anti-HIV effects
- Short-term transplant outcomes encouraging
- Potential for multiple drug interactions

Advanced Age

- •Age per se is no longer a C/I
- Selected elderly pts do better with transplant than remaining on the list

Johnson at al., Transplantation. 2000; 69: 794-9

- Rigorous screening especially for cancer
- Strongly consider expanded criteria donors
- Rejection may still be problematic

ABO-Incompatability

- Traditionally, very high risk of acute antibody mediated rejection and graft loss if transplant across ABO barrier
- Now, options include kidney exchanges or a plasmapheresis / immunosuppression protocol to remove antibodies

Highly Sensitized (to HLA antigens)

- Previous transplant or 'RBC' or pregnancy
- Traditionally: very long waiting times, higher rates of rejection and graft loss
- Excellent short-term outcomes with protocols involving either: high dose IgG or PP + IgG + MMF + tacrolimus
- Antibody mediated rejection still common but can be reversed
- Expensive, risk of overimmunosuppression

Conclusion

Community nephrologists play a key role in the transplant process

- Identification of patients who will benefit from transplant
- Referral to the transplant center
- Coordination of specialists in pretransplant evaluation
- Continuation of care while waiting for transplant
 - Notifying transplant center of health status changes
- Long-term care posttransplant

